师资队伍

王佳兵

发布人:刘婷发表时间:2019-11-06点击:

30王佳兵 王佳兵   副教授、博士生导师
Associate Professor Jia-Bing   Wang
中国地质大学(武汉)数学与物理学院School of Mathematics and   Physics,China University of   Geosciences,Wuhan, Hubei 430074
 王佳兵,男,19896月生,湖北巴东人。20186月博士毕业于兰州大学(与加拿大纽芬兰纪念大学联合培养)。现任中国地质大学数学与物理学院副教授、博士生导师,先后入选地大学者岗位青年优秀人才(2018)与青年拔尖人才(2022)。主要研究领域为微分方程与动力系统,尤其关注扩散系统的传播理论及应用。已在JNSJDEJDDEDCDSProc. Roy. Soc. Edinburgh Sec. AProc. Amer. Math. Soc.Stud.   Appl. Math.Sci. China Math.等数学、应用数学领域SCI期刊发表学术论文30余篇,其中ESI高被引论文3篇、热点论文1篇。先后主持国家自然科学基金青年项目和面上项目,以及广东省自然科学基金面上项目。 
办公室  Office 东区综合教学楼A1108
  A1108, Integrated Teaching building, East Campus
E-mail wangjb@cug.edu.cnxbmwangjiabing@163.com
Homepage https://www.researchgate.net/profile/Jia_Bing_Wang
研究兴趣Research Interests (非局部)反应扩散方程NonlocalReaction-Diffusion Equations
  应用动力系统Applied Dynamical Systems
  数学生物学 Mathematical Biology

育背景 Education

2016.09-2018.03 加拿大Memorial University of Newfoundland数学系-联合培养博士(国家留学基金委资助),导师:赵晓强教授
2014.09-2018.06 兰州大学-应用数学博士,获理学博士学位,导师:李万同教授
2011.09-2014.06 兰州大学-应用数学硕士(推荐免试),导师:李万同教授
2007.09-2011.06 西北民族大学,数学与应用数学专业本科,获理学学士学位

工作经历 Academic Experience

2018.07- 中国地质大学(武汉)数学与物理学院,特任副教授、副教授(2021.07-)、硕导、博导(2023.06-
2021.01- 中国地质大学(武汉)数学科学中心,副教授
2023.06 访问香港理工大学应用数学系(合作导师:王治安教授)

主要学术任职  Academic Service

         武汉工业与应用数学学会理事
         美国《数学评论》(Mathematical Reviews)评论员
         德国《数学文摘》(zbMATH)评论员
         教育部学位与研究生教育发展中心学位论文评审专家
         湖北省、江西省科技项目评审专家
         NonlinearityJDDEDCDS-A/BPAMSNA-RWAJMAAAMLSCI期刊审稿人

主要奖励和荣誉 Honors & Awards

1)      20235月,指导研究生朱静蕾获评第三届“数理先锋”年度人物---学术科研类

2)      20234月,指导研究生朱静蕾荣获2022年度湖北省工业与应用数学学会优秀研究生论文奖

3)      2022 12 月入选“地大学者”岗位青年拔尖人才

4)      2022年度教师年终考核评优校级优秀

5)      2021年度新葡亰8883ent(中国)百科全书科研及学科建设先进个人

6)      2020年度新葡亰8883ent(中国)百科全书党员民主评议评优活动中获评“优秀党员”

7)      2020年度中国地质大学“校级优秀班主任”

8)      20187月入选“地大学者”岗位青年优秀人才

9)      2016年获博士研究生国家奖学金

10)   2016年获兰州大学“三好研究生”荣誉称号

11)   2014年获兰州大学“优秀毕业生”荣誉称号

科研课题 Funded Research Projects

1. 主持国家自然科学基金面上项目National Natural Science Foundation of China),12271494,非局部扩散方程在非均匀介质中的传播现象及应用研究(Propagation phenomena and applications of nonlocal dispersal equations in heterogeneous media),2023/01-2026/12.

2. 主持广东省基础与应用基础研究基金自然科学基金面上项目Guangdong Basic and Applied Basic Research Foundation),带自由边界的非局部扩散模型在移动介质中的传播动力学(Propagation dynamics of nonlocal diffusion models with free boundaries in shifting environments),2023/01-2025/12.

3. 主持国家自然科学基金青年项目National Natural Science Foundation of China),11901543,移动环境下非局部扩散模型的时空传播(Spatiotemporal propagation of nonlocal dispersal models in shifting environments),2020/01-2022/12.

4. 主持中国地质大学(武汉)数学特区优秀青年人才计划培育项目, 2021/01-2022/12.

5. 中央高校基本科研业务费-ESI-数理学科团队(数学)主要成员CUGSX01.

6. 主持兰州大学中央高校基金优秀研究生创新项目(the Fundamental Research Funds for the Central Universities, Lanzhou University),lzujbky-2016-226、周期媒介中退化非局部扩散系统的时空动力学(Spatiotemporal dynamics of degenerate nonlocal diffusion systems in periodic media),2016/01-2017/06.

主要学术论文  Academic Papers (*: Corresponding author 通讯作者)

1.Jun‐Feng Li(研究生), Jia-Bing Wang*, Spatial propagation of a lattice predation–competition system with one predator and two preys in shifting habitats, Stud. Appl. Math. (2023), DOI: 10.1111/sapm.12645.

2.Zhan-Ping Ma, Jia-Bing Wang*, Existence and Bifurcation of positive solutions to a class of predator-prey models with mutual interference among the predators, Proc. Amer. Math. Soc. (2023), DOI: 10.1090/proc/16696.

3.Shao-Xia Qiao, Wan-Tong Li*, Jia-Bing Wang, Propagation dynamics of nonlocal dispersal competition systems in time-periodic shifting habitats. J. Differential Equations 378 (2024), 399-459.

4.Yu-Xia Hao, Wan-Tong Li*, Jia-Bing Wang, Wen-Bing Xu, Entire solutions of Lotka-Volterra competition systems with nonlocal dispersal, Acta Mathematica Scientia, 2023, 43B(6): 2347-2376.

5.Lei Lu(研究生), Jia-Bing Wang*, Traveling waves of the SIR epidemic model with discrete diffusion and treatment. Appl. Math. Lett. 138 (2023), Paper No. 108515, 8 pp.

6.Lei Lu(研究生), Meihong Qiao, Jia-Bing Wang*, Epidemic waves in a discrete diffusive endemic model with treatment and external supplies. Commun. Nonlinear Sci. Numer. Simul. 120 (2023), Paper No. 107163, 30 pp.

7.Yu-Xia Hao, Wan-Tong Li*, Jia-Bing Wang, Propagation dynamics of nonlocal dispersal equations with bistable nonlinearity in spatially periodic media. Discrete Contin. Dyn. Syst. Ser. B 28 (2023), no. 7, 4040-4067.

8.Jia-Bing Wang*Jing-Lei Zhu(研究生)Propagation Phenomena for a Discrete Diffusive Predator-Prey Model in a Shifting Habitat. J. Dynam. Differential Equations (2022), Online. https://doi.org/10.1007/s10884-022-10223-5.

9.Fang-Di Dong, Wan-Tong Li*, Jia-Bing Wang, Propagation phenomena for a nonlocal dispersal Lotka- Volterra competition model in shifting habitats. J. Dynam. Differential Equations (2022), Online. https://doi.org/10.1007/s10884-021-10116-z.

10.Jing-Lei Zhu(研究生), Jia-Bing Wang*, Fang-Di Dong, Spatial propagation for the lattice competition system in moving habitats. Z. Angew. Math. Phys. 73 (2022), no. 3, Paper No. 92.

11.Jia-Bing Wang, Shao-Xia Qiao, Chufen Wu*Wave phenomena in a compartmental epidemic model with nonlocal dispersal and relapse. Discrete Contin. Dyn. Syst. Ser. B 27 (2022), no. 5, 2635-2660.

12.Jia-Bing Wang, Wan-Tong Li*, Fang-Di Dong, Shao-Xia Qiao, Recent developments on spatial propagation for diffusion equations in shifting environments. Discrete Contin. Dyn. Syst. Ser. B 27 (2022), no. 9, 5101-5127.

13.Shao-Xia Qiao, Wan-Tong Li, Jia-Bing Wang*Multi-type forced waves in nonlocal dispersal KPP equations with shifting habitats. J. Math. Anal. Appl. 505 (2022), no. 2, Paper No. 125504.

14.Shao-Xia Qiao, Wan-Tong Li*, Jia-Bing Wang, Asymptotic propagations of a nonlocal dispersal population model with shifting habitats. European J. Appl. Math. 33 (2022), no. 4, 701-728.

15.Yu-Xia Hao, Wan-Tong Li*, Jia-Bing Wang, Propagation dynamics of Lotka-Volterra competition systems with asymmetric dispersal in periodic habitats. J. Differential Equations 300 (2021), 185-225.

16.Guofeng He(研究生), Jia-Bing Wang, Gang Huang*, Wave propagation of a diffusive epidemic model with latency and vaccination. Appl. Anal. 100 (2021), no. 9, 1972-1995.

17.Guofeng He(研究生), Jia-Bing Wang, Gang Huang*Threshold Dynamics of an Epidemic Model with Latency and Vaccination in a Heterogeneous Habitat. Journal of Nonlinear Modeling and Analysis (2020), Volume 2, Number 3, 393-410.

18.Shao-Xia QiaoJing-Lei Zhu(研究生), Jia-Bing Wang*, Asymptotic behaviors of forced waves for the lattice Lotka-Volterra competition system with shifting habitats. Appl. Math. Lett. 118 (2021), 107168.

19.Jia-Bing Wang, Jie Wang*, Jia-Feng Cao, Blowup and global existence of a free boundary problem with weak spatial source. Appl. Anal. 100 (2021), no. 5, 964-974.

20.Jia-Bing Wang *, Chufen Wu, Forced waves and gap formations for a Lotka-Volterra competition model with nonlocal dispersal and shifting habitats. Nonlinear Anal. Real World Appl. 58 (2021), 103208, 19 pp. ESI高被引论文、热点论文

21.Jia-Bing Wang, Wan-Tong Li*, Wave propagation for a cooperative model with nonlocal dispersal under worsening habitats. Z. Angew. Math. Phys. 71 (2020), no. 5, Paper No. 147, 19 pp.

22.Fei-Ying Yang, Wan-Tong Li*, Jia-Bing Wang, Wave propagation for a class of non-local dispersal non-cooperative systems. Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 4, 1965-1997.

23.Wan-Tong Li, Jia-Bing Wang*, Xiao-Qiang Zhao, Propagation dynamics in a time periodic nonlocal dispersal model with stage structure. J. Dynam. Differential Equations 32 (2020), no. 2, 1027-1064.

24.Jia-Bing Wang , Wan-Tong Li*, Pulsating waves and entire solutions for a spatially periodic nonlocal dispersal system with a quiescent stage. Sci. China Math. 62 (2019), no. 12, 2505-2526.

25.Jia-Bing Wang, Xiao-Qiang Zhao*, Uniqueness and global stability of forced waves in a shifting environment. Proc. Amer. Math. Soc. 147 (2019), no. 4, 1467–1481. ESI高被引论文

26.Fang-Di Dong, Wan-Tong Li*, Jia-Bing Wang, Propagation dynamics in a three-species competition model with nonlocal anisotropic dispersal. Nonlinear Anal. Real World Appl. 48 (2019), 232-266.

27.Li-Jun Du, Wan-Tong Li*, Jia-Bing Wang, Asymptotic behavior of traveling fronts and entire solutions for a periodic bistable competition-diffusion system. J. Differential Equations 265 (2018), no. 12, 6210-6250.

28.Jia-Bing Wang, Wan-Tong Li*, Jian-Wen Sun, Global dynamics and spreading speeds for a partially degenerate system with non-local dispersal in periodic habitats. Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), no. 4, 849-880.

29.Wan-Tong Li, Jia-Bing Wang*, Xiao-Qiang Zhao, Spatial dynamics of a nonlocal dispersal population model in a shifting environment. J. Nonlinear Sci. 28 (2018), no. 4, 1189–1219. ESI高被引论文

30.Fang-Di Dong, Wan-Tong Li*, Jia-Bing Wang, Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete Contin. Dyn. Syst. 37 (2017), no. 12, 6291-6318.

31.Li-Jun Du, Wan-Tong Li*, Jia-Bing Wang, Invasion entire solutions in a time periodic Lotka-Volterra competition system with diffusion. Math. Biosci. Eng. 14 (2017), no. 5-6, 1187-1213.

32.Wan-Tong Li*, Jia-Bing Wang, Li Zhang, Entire solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats. J. Differential Equations 261 (2016), no. 4, 2472-2501.

33.Wei-Jie Sheng*, Jia-Bing Wang, Entire solutions of time periodic bistable reaction-advection-diffusion equations in infinite cylinders. J. Math. Phys. 56 (2015), no. 8, 081501.

34.Jia-Bing Wang, Wan-Tong Li*, Guo-Bao Zhang, Spatial dynamics of a nonlocal dispersal vector disease model with spatio-temporal delay. Electron. J. Differential Equations 2015, No. 122, 28 pp.

35.Jia-Bing Wang, Wan-Tong Li*, Fei-Ying YangTraveling waves in a nonlocal dispersal SIR model with nonlocal delayed transmission. Commun. Nonlinear Sci. Numer. Simul. 27 (2015), no. 1-3, 136-152.

主要讲授课程  Teaching

[1] 主讲过的本科生课程(Undergraduate courses)

《数学物理方程(Mathematical Physical Equations)》、

《复变函数与积分变换(Complex Function and Integral Transformation)》、

《高等数学(Advanced Mathematics)》、

《线性代数(Linear Algebra)》、

《概率论与数理统计(Probability and Mathematical Statistics)

[2] 主讲过的研究生课程(Graduate courses)

     《数学物理方程(Mathematical Physical Equations)

     《偏微分方程基本理论(Basic theory of partial differential equations)